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Abstract. We address the problem of chaotic temperature dependence in disordered glassy systems at
equilibrium by following states of a random-energy random-entropy model in temperature; of particular
interest are the crossings of the free-energies of these states. We find that this model exhibits strong,
weak or no temperature chaos depending on the value of an exponent. This allows us to write a general
criterion for temperature chaos in disordered systems, predicting the presence of temperature chaos in
the Sherrington-Kirkpatrick and Edwards-Anderson spin glass models, albeit when the number of spins is
large enough. The absence of chaos for smaller systems may justify why it is difficult to observe chaos with
current simulations. We also illustrate our findings by studying temperature chaos in the näıve mean field
equations for the Edwards-Anderson spin glass.

PACS. 75.50.Lk Spin glasses and other random magnets – 05.70.Fh Phase transitions: general studies –
64.70.Pf Glass transitions

1 Introduction

It is generally agreed that the equilibrium states of spin
glasses [1,2] are “fragile”, i.e., they are sensitive even
to very small perturbations. Roughly, this can be ar-
gued from the fact that there exist many (meta-stable)
states whose excess free-energies grow more slowly than
the system’s volume; then arbitrarily small extensive per-
turbations will re-shuffle the different (meta-stable) states
and the lowest free-energy state will be completely dif-
ferent from the one without the perturbation. This phe-
nomenon is referred to as “chaos” [3] as the equilibrium
state depends chaotically on the perturbation. In particu-
lar, there has long been a consensus that chaos arises when
changing the couplings Jij between the spins. However,
the situation is quite different when the parameter be-
ing changed is the temperature; though earlier work [4,5]
claimed that there is chaos under even infinitesimal tem-
perature changes, some recent work goes against this;
indeed, analytic expansions [6] around the critical tem-
perature give no temperature chaos in the Sherrington-
Kirkpatrick (SK) model, and extensive Monte Carlo sim-
ulations in both the three-dimensional Edwards-Anderson
(EA) model and the SK model find little or no evidence
of temperature chaos [7,8].

This controversy is interesting in itself as it shows just
how poorly understood spin glasses remain after years of
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work. More importantly perhaps, temperature chaos plays
a central role in many theoretical descriptions of dynam-
ics. Indeed, phenomena such as rejuvenation [9] that follow
temperature changes in glassy systems must arise if there
is temperature chaos (see for instance [10] and [11]). Thus
both for equilibrium and for non-equilibrium properties, it
is appropriate to understand whether or not there is tem-
perature chaos in disordered systems, and in spin glasses
in particular.

In this work, we present a solvable glassy model where
the temperature dependency is easily analyzed. Our main
result is that the presence of temperature chaos depends
on an exponent associated with state-to-state entropy fluc-
tuations. Depending on the value of this exponent, the
model exhibits strong, weak, or no chaos at all. When ex-
trapolating these results to realistic models, we find chaos
both for the SK and EA models but only when the number
of spins N is quite large, O(1000). This may justify why
chaos is not seen in Monte-Carlo simulations. Finally, we
attempt to confirm numerically these predictions by using
a näıve mean field approximation; there we also find the
expected signatures of a chaotic temperature dependence.

This paper is organized as follows. In Section 2, we
motivate and explain this study; our Random-Energy
Random-Entropy Model is described and solved in Sec-
tion 3. In Section 4, we determine how the equilibrium
state changes with temperature. In Section 5, we general-
ize this model to the droplet/scaling picture. In Section 6,
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we discuss the predictions coming from another simple
spin glass system based on the näıve mean field equations.
We summarize and conclude in Section 7.

2 Temperature chaos as level crossings

Our framework is motivated by the concept of “valleys”
in glassy systems. Indeed, within the mean field picture of
disordered systems in their low temperature frozen phase,
ergodicity is broken and configuration space is broken into
many components not related by symmetry. These com-
ponents are often referred to as valleys as in an energy
landscape picture. Loosely, one considers each valley to be
associated with one thermodynamic “state”, though such
an association has ambiguities, especially in finite volume.
This picture of valleys is not restricted to a mean field
framework: even in the droplet [12] and scaling [13] pic-
tures, the energy landscape is very rugged and there exist
multiple valleys corresponding to possibly (meta-stable)
states that do not contribute to equilibrium properties in
the thermodynamic limit. We will thus assume that we
can talk of states (equilibrium or meta-stable) and then
ask within such a picture what can be said about temper-
ature chaos.

2.1 Level crossings

In the simple case of the ferromagnetic Ising model be-
low its critical temperature Tc, there are two valleys V1

and V2 with degenerate free-energies and magnetizations
±m(T ). Consider the mean spin-spin overlap q1,2 between
these valleys: it is q1,2 = −m2(T ). The associated (equi-
librium) states have a smooth evolution with tempera-
ture, merging when T approaches Tc from below. It is also
possible to consider the overlaps between an equilibrium
state at T and one at T + δT . Such an overlap is equal
to ±m(T )m(T + δT ), which also varies smoothly with T
and δT . On the contrary, to have temperature chaos, we
want such overlaps to be very sensitive to δT , and gener-
ically one expects the equilibrium states at different tem-
peratures to be “totally different”, meaning their overlap
is zero (in the absence of an external field).

Does one have temperature chaos in disordered sys-
tems where the abundance of (meta-stable) states plays
a fundamental role? The answer is yes for spin glasses on
Migdal-Kadanoff hierarchical lattices [14,15] or for other
disordered systems like the Directed Polymer in a Random
Medium in 1+1 dimension [16,17]. But in other systems
one might instead expect that a state dominating the par-
tition function at T will also dominate it at T + δT . Such
a scenario is represented pictorially on the left of Figure 1
where for each state we plot its free-energy as a function
of temperature. We can think of these curves as a fam-
ily of levels, and in this case there are no level crossings.
Interestingly, this is what occurs in the the infinite range
spherical p-spin model [18]. There one can define states
in the large volume limit, for instance by the Thouless-
Anderson-Palmer (TAP) [19] equations. These different
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Fig. 1. Temperature dependence of free-energies of the lowest
states. (a): there are no entropic fluctuations, as in the spher-
ical p-spin model; (b) possible level crossing behavior in more
realistic models.

states evolve smoothly with temperature, and furthermore
have zero mutual overlap. When following analytically the
free-energy of these states as a function of temperature,
one finds that they keep the same order: there are no level
crossings.

Although such a property may be special to the spher-
ical p-spin model, there is also the possibility that it is
more general, extending to all mean field models or even
to finite dimensional models; this is supported by the lack
of any numerical evidence in favor of chaos in either the
SK model or the Edwards-Anderson model.

2.2 The Bray and Moore argument

To understand why many researchers expect a chaotic
temperature dependence in finite dimensional spin glasses,
it is of some use to go over the argument due to Bray and
Moore (BM) [3], reformulated for our particular purposes.
For specificity, we work with the 3-dimensional EA model
with no magnetic field whose Hamiltonian is

H = −
∑
〈ij〉

JijSiSj . (1)

The Si are Ising spins on an L×L×L lattice and the
sum is over nearest neighbor sites with periodic bound-
ary conditions; the Jij are independent Gaussian random
variables. We start from two “states” at low temperature,
differing by a very large droplet and work in the frame-
work of the droplet/scaling theory of spin glasses [13,20].
The two states have free-energies that differ by ∆F (T ) =
∆E − T∆S ≈ Υ`θ, where ` is the characteristic size of
the flipped droplet when going from state 1 to state 2 and
Υ is the temperature dependent stiffness coefficient. Now
change the temperature; ∆F (T+δT ) ≈ ∆E−(T+δT )∆S,
so that ∆F (T + δT ) ≈ Υ`θ − δT∆S.

Following Bray and Moore, it seems inevitable that the
entropy difference is associated with the droplet’s surface
so that ∆S has a random sign and a typical magnitude
proportional to `ds/2 where ds is the fractal dimension of
the droplet’s surface. Then if ds/2 > θ, which follows from
the inequality θ < (d−1)/2, the difference in free-energies
∆F (T + δT ) ∝ Υ`θ + δT `ds/2 can change sign between T
and T + δT . The conclusion is then that the equilibrium
state(s) between T and T + δT should change on a length
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scale ` scaling as `(δT ) ∝ δT−1/(ds2 −θ) while their typical
overlap qT,T+δT should go to zero as

qT,T+δT ≈
(
l (δT )
L

)d/2
(2)

where L is the total lattice size. In the droplet/scaling
picture, θ ≈ 0.2, while in the mean field picture θ = 0; in
either case, the argument strongly suggests that the EA
model has temperature chaos. At the root of the argument
are large cancellations between E and S in the equilibrium
value of F ; these cancellations make the equilibrium state
very sensitive to changes in T . Note that numerical evi-
dence for such cancellations has been found [21] in the 3-d
EA model. Finally, as mentioned previously, chaos does
occur on the Migdal-Kadanoff lattice.

To us, the Bray and Moore argument is very convinc-
ing if one goes from T = 0 to T = ε for any ε > 0, sug-
gesting that chaos is unavoidable at T = 0. However, the
argument has potential pitfalls when considering chaos at
T > 0. First, when going from T to T + δT , both ∆E
and ∆S change, a fact which is neglected in the argu-
ment. Second, one cannot treat a single scale ` alone; it
is possible that the droplets on the scale smaller than `
will see their free-energy change sign, and thus the “evo-
lution” of V1(T ) to T + δT will differ from V1(T ) by many
droplet excitations. This evolution may be enough to keep
the free-energy of V1(T + δT ) below that of V2(T + δT ).
In this sense, the chaos at scale `(δT ) might be quenched
by the way the equilibrium state adapts to changes in T .
And since V1(T ) and V1(T + δT ) differ only by droplet
excitations, their overlap will not be close to zero. Unfor-
tunately we cannot take into account these effects in a
realistic way; nevertheless, we want to use the fact that
the state dominating the partition function at one tem-
perature is quite special, being the result of an extreme
statistic where the free-energy is optimized for that tem-
perature. We now proceed to see how we can model this.

3 The random-energy random-entropy model

In the Bray and Moore argument, the important feature
is that there are very large entropy fluctuations from state
to state. We shall now define a glass model that incorpo-
rates such entropy fluctuations. Since our model is close to
Derrida’s Random Energy Model [22](REM), we have
named it the Random-energy Random-entropy model (Re-
Rem). In the spirit of the REM, we start by taking 2N
“valleys”, each with an energy taken from a Gaussian dis-
tribution, but we shall also assign a random entropy to
each valley.

3.1 Definition of the Re-Rem

The Re-Rem model is defined as follows. We have 2N
states; the free-energy of state i is given by

Fi = Ei − TSi (3)

where Ei and Si are random independent variables, taken
from a Gaussian distribution of mean 0 and standard de-
viation σE = N0.5/

√
2 for the energy and σS = Nα/

√
2

for the entropy, α being an exponent that will play an
essential role later. More explicitly, these probability dis-
tributions are

ρE(Ei) =
exp

(
−E

2
i

N

)
√
Nπ

ρS(Si) =
exp

(
− S2

i

N2α

)
√
N2απ

· (4)

Note that for the Ei, the probability distribution is the
same as in the REM. A simple way to visualize this model
is to think to 2N lines in a temperature-free-energy plot
as in Figure 1 where the intercept on the y axis is random
as well as the slope of each line.

Being the sum of independent Gaussian random vari-
ables, the free-energy has a Gaussian distribution. Thus F
has zero mean and variance σF 2 = σE

2 + σS
2. Explicitly,

the variance of the free-energies satisfies

2σF 2 = N + T 2N2α. (5)

If α = 1/2, the two terms contribute the same magni-
tude at large N , while if α < 1/2, the variance is domi-
nated by σE . The natural scaling then seems to be α = 1/2
in which case the ground state energies and entropies are
both extensive. In a T−F plot, we may expect these states
to have crossings, like in the right part of Figure 1.

3.2 The equivalent REM

Because of the Gaussian distribution of free-energies at
each temperature T , the model is equivalent to a REM
whose energy variance is given by equation (5). This al-
lows one to solve the thermodynamics of the model. The
density of levels with free energy F is

ρF (F ) = 2N
e
− F2

2σF
2

σF
√

2π
· (6)

As expected, there is a critical dependence on F for
large N . If |F | < F0 = σF

√
2N ln 2, there is an expo-

nentially large density of states and an extensive configu-
rational entropy

SC(F ) = N ln 2− F 2

2σF 2 (7)

whereas if |F | > F0, there are no levels at all in the
thermodynamic limit and thus SC(F ) = 0. Using the re-
lation between configurational entropy and temperature
T−1 = ∂SC/∂F , the critical temperature is

Tc =
σF√

2N ln 2
(8)

and thus Tc satisfies the self-consistent equation

Tc =

√
N + Tc

2N2α

2
√
N ln 2

=

√
1 + Tc

2N2α−1

4 ln 2
· (9)
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This lead us to distinguish three cases. First, if α < 0.5,
then Tc = 1/

(
2
√

ln 2
)

, as in the original REM. There is
a low temperature phase in which the partition function
is dominated by a finite number of states (those with the
lowest free-energies); the entropy density in this phase is
zero. There is also a high temperature phase for which the
number of states that contribute to the partition function
is exponentially large in N . Second, for α = 0.5, one finds
that Tc = 1√

4 ln 2−1
≈ 0.75. The physics is the same as be-

fore, but the critical temperature is shifted. In both cases,
we have a glassy model with a one-step replica symmetry
breaking transition [22,23]. Third, if α > 0.5 one finds
Tc = +∞; there is no phase transition, and the systems
remains in the “low temperature phase” at all tempera-
tures. This can be considered to be unphysical because
a microscopic Hamiltonian such as equation (1) will al-
ways have a high temperature disordered phase. If we go
back to the Bray and Moore argument, in which entropy
fluctuations grows as lds/2, we see that we should identify
the Re-Rem parameter α with ds/(2d). Happily, if one fol-
lows the prescription α = ds/(2d), there is no unphysical
behavoir because ds ≤ d, so α ≤ 0.5.

Note that when α ≤ 0.5, the lowest free-energies scale
linearly with N and the gap between the lowest free-
energy state and the first excitation is O(1), as in the
REM. Furthermore if α < 0.5, the lowest free-energy den-
sity does not change with T , whereas if α = 0.5, it grows
as
√

1 + T 2. Finally in the case α > 0.5, the free-energy
grows as Nα+0.5 and thus is not extensive.

3.3 Energy and entropy

The lowest free-energy in the Re-Rem at each temperature
is easily found, and from it we can determine the typical
energy and entropy at each temperature. The lowest free-
energy at each temperature is given by [22]

F0 ≈ −
√

2N log 2σf = −N
√

log 2(1 + T 2N2α−1). (10)

The entropy in the low T phase is obtained from the
derivative of this free-energy with respect to temperature:

S0 ≈
√

log 2 TN2α

√
1 + T 2N2α−1

(11)

which confirms that the entropy is extensive only for α =
0.5. To determine the energy we use,

E0 = F0 + TS0 ≈ −
N
√

log 2√
1 + T 2N2α−1

· (12)

The energy is thus extensive if α ≤ 0.5.

4 Level crossings in the Re-Rem

Given our model with many states and a spin glass phase,
we focus on the problem of level crossings. We have 2N

levels and randomness in entropy and energy. We want
to follow the lowest free-energy state and see if this state
changes with temperature, and how often it does if so.
First, we will provide some analytical constraints, deriving
a scaling law governing the number of crossings in a δT
interval; then we will determine the corresponding scaling
function by a numerical computation.

4.1 Level crossings via thermodynamics

At T = 0, the lowest level is the one with the minimum en-
ergy, entropy plays no role. If one follows the line starting
from this minimum energy in temperature, we can expect
some other levels, with larger energies but also more neg-
ative entropies, to cross this line. This is what happened
in the Bray and Moore analysis, showing that zero tem-
perature chaos is inevitable. But what happens at T > 0?
Does the lowest free-energy state change at each temper-
ature? What is the density of crossings? The problem of
knowing which level is lowest at each temperature and
of computing crossing statistics seems rather non-trivial;
however thanks to the mapping to the REM, it is possible
to compute the temperature dependence of the best level,
and to deduce from that many properties of the crossings.

Let us begin with some remarks. First, the role of the
exponent α is just to rescale the temperature definition
by a factor Nα as is evident from equation (3). Thus if
one solves the problem for α = 0, changing to an α 6= 0
just divides each crossing temperature by Nα. As a con-
sequence, the total number of crossings does not depend
on α. Second, this total number of crossings (the number
of times the lowest free-energy level changes its slope) is at
most of O(N). This can be shown using the following ar-
gument. Take all 2N states and consider the lowest one L1

at T = 0. The entropy is random and uncorrelated with
the energy, so if you take the next state L2 in energy, you
will have a good chance (50%) that it will have a more
negative entropy and thus will cross L1. Suppose this is
the case. A further state Li with a still greater energy will
cross L2 only if its slope is more negative than that of L2.
The entropy of a successful candidate Li must be the low-
est of i entropies taken at random. Since by hypothesis L2

has the lowest entropy of 2 entropies taken at random, we
have to let i go up to 4 to have a 50% chance of finding a
state that will cross L2. Extending this argument, to get
the kth crossing one will need to examine O(2k) successive
levels. Furthermore, it is not difficult to show that when
going from L2k to L2k+1 the energy increases by O(1).

Of course, these O(N) crossings are not the end of
the story because some of them may be irrelevant. Take
for example the right part of Figure 1 where the third
energy state crosses the second one, but where the fourth
one crosses the second one before the third does. From
this simple example we see that not all crossings count;
we can only say that the number of levels that become at
some point the state of lowest free-energy is at most O(N),
and that the energy at each level crossing increases by at
least O(1).
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Fig. 2. The lowest states in the Re-Rem remain inside a
“tube”. Left: α > 0.5, the dependence is linear in T ; right:
α ≤ 0.5 the tube is curved.

In the large N limit, a scaling behavior sets in. But
before being quatitative, let us see what qualitative prop-
erties imply level crossings. The starting point is the fact
that, at fixed T , the Re-Rem reduces to a REM. The
lowest free-energy at each temperature scales as in equa-
tion 10 and its sample to sample fluctuations are of O(1).
Thus the lowest state resides in a “tube” (see Fig. 2) in the
(T, F ) diagram. Clearly, if the tube is not linear in tem-
perature, there must be some level crossings. We will now
see how this imposes strong constraints on the crossing
statistics.

First, consider the case where α > 0.5. At large N ,
we get

F0 ∝ −Nα+0.5T. (13)

The linear temperature dependence suggests that the tube
has one, or just of few states passing through it for all T .
Moreover the slope of this tube is of O(Nα+0.5) which is
the scale for the lowest entropy value obtained by taking
2N values in a Gaussian of variance N2α. So if at T = 0,
the best state is the one with lowest E, at any strictly
positive temperature the best state is the one with the
best slope. This means that all level crossings take place
at zero temperature; there is zero temperature chaos but
no chaos at T > 0!

When α ≤ 0.5, we have

F0 ≈ −N
√

ln 2− N2α
√

ln 2T 2

2
· (14)

Now, the dependence in T is non-linear; there must be
some crossings at T > 0 because the lowest energy state
changes its slope in temperature and in N . This suggest
that the number of crossings in a δT interval diverges
with N for every temperature.

Finally, if α = 0, we obtain

F0 ≈ −N
√

ln 2−
√

ln 2T 2 (15)

so the dependence on T is N -independent. Since the en-
ergy increase of successive crossings is at least of O(1),
it is not possible to pass an infinite number of levels in
the tube. Thus there should only be a finite number of
crossings in each δT interval.

Now we also know that changing α is the same as re-
scaling the temperature; this gives a strong constraint on
the number of crossings in a given interval. Let’s assume

that the scaling of the mean number of crossings in a tem-
perature interval δT is of the form

NN (T, T + δT ) = Nγ(α)δTg

(
T

Nκ(α)

)
· (16)

Then the invariance under the transformation α1 → α2

and T → TNα1−α2 gives

γ(α1)− γ(α2) = α1 − α2

κ(α1)− κ(α2) = α2 − α1. (17)

It follows that

γ(α) = α+ β1

κ(α) = −α+ β2. (18)

Furthermore, we must respect the constraints derived pre-
viously. First, assuming g(x) decays quickly (not as a
power law) at large x, the disappearance of T > 0 cross-
ings when α > 0.5 gives β2 = 0.5. Second, since α = 0
gives a finite crossing density at large N , we must have
β1 = 0. The scaling form for the mean number of crossings
in a temperature interval δT is then

NN (T, T + δT ) = NαδTg

(
T

N0.5−α

)
· (19)

From this formula, we deduce that the total number of
crossings is in fact O(

√
N), much less than the bound

O(N). Also if g(0) is finite, the case α = 0 leads to a
mean temperature of the kth crossing that is proportional
to k.

4.2 Numerical investigation

It is of some use to illustrate and check these results by
a numerical procedure but we also want to compute the
function g(x). A simple way to do this is to generate 2N
random energies, 2N random entropies, and to check for
crossings, but such a procedure require a computation
time that is exponential in N . Instead we used a method
which allows us to have an algorithm linear in N , and
thus to simulate up to 2800 levels. With no loss of gener-
ality we can focus on the case α = 0; we have simulated
10 000 instances for N = 100, 200, 300, 400, 600 and 800.

We explain our algorithm in the Appendix for read-
ers interested in algorithmic issues. Basically, our method
constructs in a time proportional to N the series of cross-
ing points for a random realization of the Re-Rem. Then
we measure the statistics of these crossings by averaging
over many instances, repeating this for different values
of N . The scaling function g(x) is then obtained by us-
ing equation (19); the results are shown in Figure 3. The
data collapse is excellent, showing that the T/

√
N scaling

works very well. We do see some deviations at small N
in the tail; these correspond to corrections to scaling, and
are small (invisible) beyond N = 500.
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Fig. 3. Scaling function g(x) in the Re-Rem. The inset shows
the raw data for the mean number of crossings versus temper-
ature for α = 0.5.

From this numerical computation of g(x), we can ex-
tract the number of crossings in any temperature interval
for any α and N . Consider first the case α = 0.5 which is
the appropriate value in the mean field picture. One has

Nα=0.5
N (T, T + δT ) =

√
NδTg(T ). (20)

Focusing on the interval Tc/3 to 2Tc/3, we find about
6
√
N/1000 crossings, that is 6 crossings for N = 1000.
One can also consider other values for the exponent α.

In the framework of the EA model in d = 3, the fractal
dimension of the surface of system-size domains has been
measured [24,25], leading to α = ds/2d ≈ 0.46. For this
value of the exponent the mean number of crossings in the
Tc/3 to 2Tc/3 interval is now reduced to about 3 when
N = 1000.

The main conclusion of this section is that the number
of crossings in a temperature interval grows as a power
of N if 0 < α ≤ 0.5 but with a small prefactor. Thus, if we
simply map our Re-Rem results to estimate the strength
of chaos that should arise in Monte Carlo simulations, we
find that there will be very little sign of chaos until N
is at least a few hundred. However, the mapping from
the Re-Rem most certainly over-estimates significantly the
number of crossings in microscopic models (cf. the next
section and the final discussion).

5 Droplet extension of the Re-Rem

As given so far, our Re-Rem has excitation energies
of O(1). However, it is possible to modify the model in
order to mimic the droplet/scaling [13,20] picture of spin
glasses. There low-lying excitation energies are O(Nθ/d),
that is O(Lθ) where θ is the stiffness exponent which is
at the heart of the droplet and scaling pictures of spin
glasses.

5.1 REM revisited: The Scaling-REM

To construct the Scaling-REM (S-REM), we note that it
is not appropriate to identify single spin configurations
with states, a valley containing a large number of similar
configurations. Thus we take a number of states that is
much smaller that 2N ; as a consequence, the variance of
their energy will no longer be O(N). Our method is thus to
rescale the energies by a factor Nθ/(2d) while the number
of states is reduced from 2N to 2Nβ (with β < 1). This
gives

2σE2 = N1+ θ
d (21)

SC(E) = Nβ ln 2− E2

2σE2 · (22)

Then Tc = σE/
√

2Nβ ln 2 and E0 = −σE
√

2Nβ ln 2. We
want an extensive ground state energy at T = 0; thus

E0 = −
√
Nβ ln 2

√
N1+θ/d (23)

imposes β = 1 − θ
d . It follows that the critical tempera-

ture is now given by Tc = Nθ/d/2
√

ln 2, and so Tc > 0
only if θ ≥ 0. Note that for θ > 0, Tc → ∞ as in the
Directed Polymer in a Random Medium (DPRM) in 1+1
dimension, in contrast to what happens in realistic spin
glasses. Actually, this S-REM is very close to the DPRM.
Consider for instance the exponents giving (i) the finite
size corrections to the ground state energy, (ii) the sam-
ple to sample fluctuations and (iii) the energy of the first
excited state; they are the same (i.e., θ/d) in the two mod-
els, whereas two distinct exponents arise in the droplet
model [26]. Nevertheless, this S-REM provides an inter-
esting picture of the low temperature phase that is quite
compatible with the scaling/droplet picture there, even if
it misses Tc <∞.

5.2 Re-Rem revisited

We can perform the analogous scaling extension for the
Re-Rem and obtain a Scaling-Re-Rem where low-lying ex-
citation energies scale as Nθ/d. All the computations are
straight-forward. One finds that the critical temperature
of the S-Re-Rem is given by

Tc =

√
N1+θ/d + T 2N2α

2
√
N1−θ/d ln 2

=
Nθ/d

√
1 + T 2N2α−θ/d−1

2
√

ln 2
(24)

and that F0 ∝ −N
√

1 + T 2N2α−1−θ/d. Now letting α′ =
α− θ/(2d), we have

Tc =
Nθ/d

√
1 + T 2N2α′−1

2
√

ln 2
(25)

F0 ∝ −N
√

1 + T 2N2α′−1. (26)



F. Krzakala and O.C. Martin: Chaotic temperature dependence in a model of spin glasses 205

From this, we see that the thermodynamics is the same
as that of the Re-Rem but where α has been replaced
by α − θ/(2d). We can also apply this correspondence
to the formulae for the level crossing properties1, again
that there is temperature chaos. More precisely, if we start
from the scaling form 16 then using α′ instead of α, equa-
tion (26) implies as before that β2 = 0.5, but β1 6= 0 since
the width of the tube grows as Nθ/d. However, the num-
ber of levels being 2N

β

, the total number of crossing goes
as
√
Nβ and the general scaling for θ 6= 0 is

NN (T, T + δT ) = Nα−θ/dδTg

(
T

N0.5−α+θ/2d

)
· (27)

5.3 Criterion for temperature chaos

Even if the S-Re-Rem model is a bit ad hoc, it may cor-
rectly describe some glassy systems at low temperature.
The general criterion for temperature chaos depends only
on the value of parameters α and θ/d. If α−θ/d < 0, there
is no chaos at all, all crossings being pushed to T = ∞.
If α − θ/d = 0, the density of crossings is finite; this is
what we call weak temperature chaos. If 0 < α− θ/d while
α−θ/(2d) ≤ 0.5, there are an infinite number of crossings
in each temperature interval, that is strong temperature
chaos. Finally, if α − θ/(2d) > 0.5, there is no finite tem-
perature chaos because all crossings take place at T = 0.
Note that if one accepts α = ds/2d, we recover the original
Bray and Moore argument. However, within our model we
can estimate the number of crossings, and comparing to
the discussion of Section 4, the case θ > 0 leads to even
fewer crossings than when θ = 0.

6 Temperature chaos in the näıve mean field
framework

Ideally, one would like to confront the Re-Rem predic-
tions with the chaos properties arising in a realistic model.
This requires defining finite volume states or valleys and
following them as a function of temperature. A natural
approach is to use the TAP [19] equations where each
state is parametrized by its magnetizations mi = 〈Si〉.
However, these equations have 2 serious drawbacks: (i)
on the 3-dimensional lattice, the TAP equations fail to
give non-paramagnetic solutions [27]; (ii) even for the SK
model [28], having N <∞ (which is unavoidable numeri-
cally) leads to unsurmountable convergence problems [29].
The source of these difficulties seems to be the strength of
the retro-action term. An ad-hoc solution consists in ei-
ther reducing or neglecting this term. Following previous
authors [27,30], we choose the second option which corre-
sponds to the näıve mean field equations (NMFE) [31].

1 Note that the width of the tube now grows as Nθ/d.

6.1 Näıve mean field equations

The NMFE are

mi = tanh

β∑
j

Jijmj

. (28)

The solutions to these equations define the näıve mean
field (NFM) states; they correspond to the stationary
points of the NMF free-energy functional

F ({mi}) = E({mi})− TS({mi}) (29)

where the energy and the entropy functionals are given by

E = −
∑
〈ij〉

Jijmimj (30)

S =−
∑
i

(1 +mi) ln(1 +mi)+(1−mi) ln(1−mi)
2

· (31)

F has both local minima and saddles; we follow the TAP
approach and construct in our numerics only local minima.

Our procedure is as follows. For each disorder instance,
we will produce two NMF states L1 and L2 and will work
out their dependence on temperature. We start by build-
ing their T = 0 intercept: L1 is in fact the ground state,
while L2 is a large-scale low-energy excitation. (To ob-
tain the ground state, we use a state-of-art algorithm [32].
In virtue of the method used to generate excitations [24],
the excitation energies are O(1) and do not grow when
increasing N .) We then numerically determine how the
Li evolve as we increase the temperature from 0 to Tc.
In practice, we increase the temperature T in sufficiently
small steps (∆T = 0.05) and perform steepest descent on
the free-energy functional, using as starting point Li at
the previous temperature. With this procedure, referred
to as heating of the ground state in [30], we consider two
NMF states that evolve with increasing temperature.

6.2 Numerical results for the 3-d EA model

First, let us give some qualitative properties of this NMF
system. We find a non-zero Edwards-Anderson order pa-
rameter qEA =

∑
imi

2/N for any instance and any state
when T < Tc (Tc ≈ 5 in the 3-d NMF EA model, and
Tc ≈ 2 in the NMF SK model), and qEA is self-averaging.
If we follow a given state, the two temperature spin over-
lap q0T =

∑
imi

(T=0)mi
(T )/N decreases and reaches zero

when T = Tc. Furthermore, the equal temperature mutual
overlap between L1 and L2, qαβTT =

∑
imi

α(T )mi
β(T )/N ,

also decreases smoothly when going from T = 0 to Tc, sug-
gesting that evolving those states according to the NMF
equations mainly just reduces the size of the mi = 〈Si〉.
Do we get level crossings as would be expected if there
was temperature chaos? We are particularly interested in
the behavior of state to state free-energy fluctuations at
very low temperatures as this quantity is at the heart of
our Re-Rem picture.
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Fig. 4. P (δF ) at different temperatures for 0 ≤ |q| ≤ 0.05
excitations in L = 12 EA model. Inset: the variance of δF for
L = 8, 10, 11 and 12 (from bottom to top).

For this model, we have used on average 1000 ground
states and excitations for sizes L = 8, 10, 11 and 12. We
focus in all that follows on the instances where our exci-
tations have an overlap with the ground state satisfying
0 ≤ |q| ≤ 0.05. However the data for other overlap inter-
vals have a qualitatively similar behavior.

According to zero-temperature chaos, when going from
T = 0 to T > 0, the valley L1 should be above the val-
ley L2 with a strictly positive probability when N grows.
We find this to be the case, and have found that the prob-
ability to find such an inversion increases with tempera-
ture. To understand this more quantitatively, define δF
to be the free-energy difference F (L2) − F (L1). Figure 4
shows the distribution P (δF ) at different temperatures for
L = 12. The variance of this distribution increases with
temperature. The curves for different L and different over-
lap intervals look similar, so once T > 0, there is a positive
probability that δF < 0, corresponding to a level cross-
ing. Since there are an infinite number of such excitations
in the thermodynamics limit, and since they plausibly all
behave the same way, these crossings suggest that there is
indeed temperature chaos.

To make contact with our Re-Rem picture, one should
extract α from the L dependence of the variance of δF . If
α > 0, the variance of δF will diverge at largeL as L2αd. In
the inset of Figure 4 we plot the variance of δF at different
temperatures. At any given temperature, we can fit its L
dependence; not surprisingly, just as was previously found
at T = 0 [24,25], the data can be fit with α = 0.5 (the
mean field case d = ds) while the best fit gives α ≈ 0.46
(ds ≈ 2.76). What is important is that α is certainly not 0.
This suggests that this system have strong chaos.

6.3 Numerical results for the SK model

Recently, the näıve mean field framework was used by
Mulet et al. [30] to study temperature chaos in the SK
model. Although they concluded that there is no chaos,
we feel it is necessary to reconsider that conclusion in view
of the Re-Rem analysis.
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T

Fig. 5. P (δF ) at different temperatures for 0 ≤ |q| ≤ 0.05
excitations in the SK model (N = 192). Inset: the variance of
δF for L = 64, 128 and 192 as a function of T (bottom to top).

Compared to the EA model, the SK is numerically dif-
ficult because of its long range interactions. More numer-
ical effort is needed to find ground states or excitations
and also for doing the steepest descent on the NMF free-
energy functional. We were thus limited to “small” values
of N : we used N = 64, 128 and 192, performing statistics
using 50 ground states and excitations for each value ofN .

Our conclusions are qualitatively similar to those we
obtained for the 3-d EA model (see Fig. 5). We find that
there is a strictly positive probability that L1 and L2 cross;
fits of the free-energy fluctuations give a value for α fully
compatible with 0.5. These results are those that are ex-
pected in the Re-Rem picture; it is thus appropriate to
conclude that there should be temperature chaos. How-
ever, note that the variance of δF grows only slowly with
N so very few crossings are expected until much larger
values of N are reached.

7 Discussion

This work has two main points. First, we have developed
a solvable model of spin glasses inspired from the REM
that allows a precise study of temperature chaos. This
model has strong temperature chaos unless its exponent α
is artificially set to zero. However; this chaos is absent
until the system size N reaches about several hundred.
Second, we have argued that this Re-Rem model should be
relevant for real spin glasses by considering the particular
case of näıve mean field equations. The numerical study
of that system turned out to be in complete agreement
with the expectations of the Re-Rem picture, giving strong
evidence that temperature chaos does occur in spin glass
models such as the 3-d Edwards-Anderson and the SK
models.

The question of temperature chaos has lingered on
for many years because of lack of numerical evidence.
One may justify the absence of chaos signals in past and
present MC simulations by the fact that in the Re-Rem, N
must be quite large for chaos to appear. Indeed, we saw
that in the Re-Rem chaos becomes clear for N ' 1000
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but it is clearly inappropriate to consider that one has 2N
states in a physical system of N spins. Having far fewer
states will lead to fewer crossings, and so it may be that
no chaos will be seen from MC simulation in the near fu-
ture. However, we believe that our näıve mean field study
suggests on the contrary that chaos in realistic systems is
within grasp of current Monte Carlo techniques. One way
to do this is to consider for instance the 3-d EA model
and to extract at each temperature the states or “valleys”
by clustering the equilibrium configurations. Then follow-
ing these states in temperature will allow one to compare
directly with the Re-Rem picture.

In the future, it would be interesting to extend the
Re-Rem to more complex systems such as the Generalized
Random-Energy-Model. In such a G-Re-Rem model, one
would be able to understand the effects of 2-step, 3-step
and continuous RSB. Another interesting possibility is to
study the Re-Rem with more realistic behavior than a
pure linear dependence in T , the free-energies of levels
being a more complicated function of T .

We wish to thank M. Mézard, G. Parisi and M. Sasaki for
stimulating discussions. F.K. acknowledges a fellowship from
the MENRT. The LPTMS laboratory is an Unité de Recherche
de l’Université Paris XI associée au CNRS.

Appendix

Here we explain in detail our algorithm. We want to con-
struct efficiently the series of crossing points for a realiza-
tion of the Re-Rem having 2N states or levels, level i hav-
ing energy Ei and entropy Si. It is convenient to assume
that these states have been ordered in increasing value of
their energies. We will start with the ground state: this
level l(0) = 0 has energy-entropy (El(0), Sl(0)). Then we
will continue by finding the next level l(1) that has a lower
entropy than that of l(0), i.e., Sl(1) < Sl(0). This construc-
tion is extended by recurrence: given the level number l(n)
and values (El(n), Sl(n)), we will generate with the correct
probability distribution the next level l(n + 1) that has
Sl(n+1) < Sl(n) as well as the quantities (El(n+1), Sl(n+1)).
The key point is that all these quantities can be gener-
ated recursively without “looking” at all 2N states. Once
this list of (l(n), El(n), Sl(n)) values is constructed (this
takes O(N) operations), we can then reconstruct the low-
est state at any temperature, and thus the statistics of the
crossings.

To begin our algorithm, we set n = 0, l(0) = 0 and
choose Sl(0) according to its Gaussian distribution. Then
we must generate El(0) (note that El(0) and Sl(0) are un-
correlated random variables). The probability density of
El(0) is

P
(
El(0)

)
= 2NρN

(
El(0)

) [
1−Q

(
El(0)

)](2N−1) (32)

where ρN (E) is the probability density of energies in the
Re-Rem model (a Gaussian) and Q is defined by

Q(E) =
∫ E

−∞
ρN (x)dx. (33)

To generate El(0) with its distribution, we use the
accept/reject method. Finally we set Eold = El(0)

and Sold = Sl(0).
Now we enter the recursion. Given the values l(n), Eold

and Sold, we first determine the next level l(n + 1) that
has an entropy below Sold. Let ∆l be defined by l(n +
1) = l(n) +∆l; ∆l is exactly the number of times one has
to generate a random entropy Snew according to the Re-
Rem entropy distribution until we find a value satisfying
Snew < Sold. Define p to be the probability to get a slope
smaller than Sold with one trial; then

p =
∫ Sold

−∞
ρN (S)dS. (34)

Clearly, ∆l (the number of attempts made before reaching
an entropy value lower than Sold) is a random variable; its
probability distribution is

P (∆l) = (1− p)∆l−1p. (35)

We thus generate ∆l according to this distribution. This
gives us the new level to consider, l(n + 1) = l(n) + ∆l.
If l(n + 1) ≥ 2N , we stop as such a level does not exist.
Otherwise, l(n + 1) is a legitimate level, and we proceed
by determining (El(n+1), Sl(n+1)).

The entropy of level l(n + 1) is easy to generate be-
cause its distribution is that of any Si subject to the con-
dition that Snew < Sold. The only difficulty is for gen-
erating El(n+1). To do that, start with P (Eold, Enew) =
P (Eold)P (Enew|Eold) where the quantities l(n) and l(n+
1) are considered as known. From this relation, we derive

P (Enew|Eold) =

(
l(n+ 1)− l(n)− 1

M − (l(n) + 1)

)

×Q(Eold, Enew)∆l−1(M − l(n+ 1))ρN
(
El(n+1)

)
×
(
1−Q

(
El(n+1)

))M−(l(n+1)+1)(
1−Q

(
El(n)

))M−(l(n)+1)
(36)

when M = 2N and Q(a, b) = Q(b)−Q(a). We sample this
distribution by the accept-reject method again.

Equation (35) has a simple interpretation; we
have built a set of “volumes” in the space of Eis.
The relative space we can explore now has weight
[1−Q

(
El(n)

)
]M−(l(n)+1). In this space, we first generate

∆l − 1 energies in the interval [El(n), El(n−1)] and this
gives the first part. Then we assign the level whose en-
ergy is El(n+1). There are M − l(n + 1) ways to choose
the level among the remaining ones. Finally, the last
(M − (l(n+1)+1)) energies have to be assigned and then
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we must normalize the distribution. Given this Enew, we
set El(n+1) to Enew and we are finished. To continue the
recursion, we set Eold to Enew, Sold to Snew and n to n+1.

To summarize the whole procedure, using these prob-
ability distributions, we can directly create an instance of
a list of crossings by producing the O(N) El(n) and Sl(n)

that will cross and then study these crossings (this is a
simple problem). From a numerical point of view however,
these distributions are not so easy to compute, and one
has to take care of machine rounding errors; that source
of error limited us to N < 1000.
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